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Abstract—Natural language-guided drone geo-localization
(DGL) provides an intuitive and scalable mode of human-drone
interaction for tasks such as search, rescue, and surveillance.
Recent Vision-Language Models (VLMs) can learn semantic
correspondences between text and images during fine-tuning.
However, their performance in DGL tasks remains constrained,
as complex instructions and cluttered scenes often cause semantic
dilution and granularity mismatch, leading to weak cross-modal
alignment. Consequently, the models struggle with ambiguous
targets and suffer from reduced localization accuracy. To address
these challenges, we propose SAA-DGL, a framework for inter-
pretable language-guided Drone Geo-Localization that enriches
Semantic Attribute Alignment (SAA) with large language models
(LLMs). It introduces two parameter-free cross-modal fusion
modules: (1) the LLM-driven Cross-modal Semantic Attribute
Enrichment (LCSAE) module, which extracts fine-grained at-
tributes (e.g., color, shape, position) from text and embeds them
into visual features as explicit semantic anchors, producing
semantically enriched cross-modal representations; and (2) the
Bidirectional Feature Alignment (BFA) module, which builds
fusion relationships between visual and textual features via
similarity-driven mechanisms, enabling effective integration of
enriched visual and textual information. This design improves
cross-modal consistency and interpretability while preserving
pretrained alignment priors and enhancing training stability.
Experiments on the GeoText-1652 benchmark show that SAA-
DGL achieves state-of-the-art performance and strong robustness
under complex visual and linguistic disturbances, validating its
effectiveness for challenging geo-localization scenarios.

Index Terms—Drone Geo-localization, Cross-modal Alignment,
Cross-modal Feature Enhancement.

I. INTRODUCTION

ATURAL language-guided drone geo-localization

(DGL) is an emerging technology that translates
human instructions into spatial semantic actions, enabling
drones to comprehend and execute geo-localization tasks
autonomously. This capability lays the foundation for more
complex downstream applications and holds great promise
in various fields, including disaster management [1], live
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i brown roof. The building has multiple s and appears to be an office or
{ commercial space. The windows are large and evenly spaced, and there are several |
: onies on the upper levels®There are also several cars parked on the street, and
i a train track runs along the left side of the building. The object in the center of
{ the image is a large, multi-story building with a white facade and a brown roo

{ The building appears to be an office or commercial space, with several windows
i on each floor and several b ies on the upper levels. In the image, there are :
several other objects that have a spatial relationship with the main object. On the
right side of the building, there is a smaller, single-story building with a red roof.
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Fig. 1. Example of natural language-guided DGL. Orange words indicate
object information, red words indicate location information, dark blue words
indicate color information, and dark green words indicate shape information.
The yellow line indicates the information of the object within the yellow box,
while the dark blue line indicates the description of the blue box. X denotes
the wrong identification, and ¢ denotes the correct identification.

search and rescue [2], and power line inspection [3]. Most
existing DGL research is typically regarded as a sub-task
of visual retrieval, with a primary focus on drone-view
image-based search [4], [5]. In this setting, a query image
is used to retrieve target images from a large-scale gallery,
often involving cross-view matching across platforms such
as drones and satellites. However, in real-world applications,
obtaining a query image is often costly or impractical.
In practice, users prefer to interact with drones via natural
language, which serves as an effective modality for specifying
and retrieving spatial targets in complex environments. In
recent years, multimodal foundation models have made
remarkable progress in text-related multimodal tasks,
showcasing strong capabilities in cross-modal alignment [6]—
[9]. To enhance human-drone interaction in natural language
settings, Chu et al. [10] proposed GeoText-1652, a benchmark
for natural language-guided drone geo-localization. Built
on University-1652 [5], it incorporates fine-grained textual
descriptions and spatial alignments across multi-view imagery,
enabling effective instruction-to-region matching. However,
GeoText-1652 struggles with real-world instructions that are




rich in object semantics and compositional attributes. For
instance, the instruction “On the right side of the
building, there is a smaller, single-story
building with a red roof” combines spatial cues
with semantic details such as color and structure. These
natural, attribute-based expressions require DGL systems to
accurately parse and ground compositional semantics. As
shown in Fig. 1, the system must retrieve the most relevant
region from a large-scale drone image gallery based on
a language query, demanding high precision and robust
cross-modal alignment. Despite these advances, natural
language-guided DGL still faces two key challenges: (1)
Dilution of key semantic information within lengthy,
attribute-rich instructions, and (2) Mismatch of semantic
granularity between linguistic descriptions and visual
representations. These issues weaken cross-modal alignment
and ultimately limit localization performance.

Dilution of key semantic information. In drone navigation
scenarios, natural language instructions often bury critical
target cues within lengthy descriptions. As shown in Fig.1,
the core references (highlighted) are typically surrounded by
redundant background information, thereby introducing noise
and weakening cross-modal discriminability. Existing methods
such as keyword extraction [10] overlook compositional se-
mantics, while fixed-length truncation [11] may discard crucial
information, both of which limit precise alignment in real-
world scenarios. Mismatch of semantic granularity. Lan-
guage descriptions usually progress from high-level categories
to fine-grained attributes (e.g., “building” — “brown roof”),
whereas visual encoders tend to capture low-level features
such as textures and edges. This inconsistency is particularly
pronounced in multi-view scenarios: the same scene observed
from different viewpoints may cause the model to incorrectly
match text with semantically inaccurate but visually similar
images, such as selecting (b) or (c) instead of the correct (a)
in Fig. 1. This discrepancy significantly increases the diffi-
culty of learning robust cross-modal correspondences. These
challenges highlight the necessity of developing mechanisms
capable of robustly identifying and aligning fine-grained se-
mantic attributes within complex linguistic inputs.

To address the aforementioned challenges, we propose
the Semantic-Attribute Alignment approach for Drone Geo-
Localization (SAA-DGL). To mitigate semantic dilution, we
introduce a LLMs-driven Cross-modal Semantic Attribute En-
richment (LCSAE) module based on attribute-guided feature
enhancement. Specifically, large language models (LLMs) are
used to extract referential semantic attributes from natural
language instructions, including color, shape, position, and
object category. These attributes capture the visual intent
embedded in textual descriptions and help reduce ambiguity
and redundancy. By integrating them with visual features,
the model achieves improved representational capacity and
contextual grounding, enabling more precise alignment with
drone-view observations. To address the mismatch in semantic
granularity, we propose a Bidirectional Feature Alignment
(BFA) module. This module first refines visual representations
by aligning them with fine-grained semantic attributes from
text, allowing the model to focus on spatially relevant re-

gions. These enhanced visual features are then used to further
guide textual representation, forming a dynamic bidirectional
interaction. This process enhances cross-modal consistency
and discriminability, effectively narrowing the semantic gap
between language and vision. The main contributions of this
paper are summarized as follows:

o We propose a novel framework, SAA-DGL, for natural
language-guided DGL. It incorporates a LCSAE module
that leverages LLMs to extract enriched target attributes
from textual descriptions, which are explicitly used to
guide fine-grained visual feature extraction and obtain
more relevant visual semantics.

o We design a BFA module that establishes a closed-loop
interaction between visual and textual modalities, im-
proving cross-modal consistency and alleviating semantic
granularity mismatches.

o Extensive experiments on natural language-guided DGL
benchmarks demonstrate that our method achieves state-
of-the-art performance and robustness on both text-to-
image and image-to-text tasks.

II. RELATED WORK
A. Drone Geo-localization

In recent years, intelligent drone agents equipped with ad-
vanced cameras have been increasingly deployed worldwide.
Compared with traditional static surveillance systems, drones
offer dynamic coverage, autonomous mobility, and flexible
control of viewpoints and altitudes, enabling comprehensive
area monitoring. These advantages have spurred diverse ap-
plications based on drone-view visual data [12], [13]. Among
them, drone geo-localization [14] is a key capability for
human-drone interaction and has attracted considerable re-
search attention. Cross-view geo-localization has evolved from
early CNN-based method [15] to Transformer-based approach
incorporating attention and geometric reasoning [16], and
more recently to CLIP-driven contrastive learning frameworks
leveraging large-scale vision-language pretraining [17]. These
developments have substantially enhanced the robustness and
generalization of cross-view matching.

University-1652 [5] introduced drone-view imagery into
the cross-view localization task, supporting image-to-image
matching between drone and satellite views. DenseUAV [18]
improves robustness by densely sampling urban scenes at
low altitudes, while SUES-200 [19] increases viewpoint di-
versity through multi-altitude captures. GTA-UAV [20] syn-
thesizes a large-scale, continuous drone dataset using a video
game engine, facilitating evaluation under complex and re-
alistic conditions. To better address dynamic environments,
Video2BEV [21] transforms drone video sequences into Bird’s
Eye View (BEV) representations, capturing motion and spatial
consistency for stable localization. GeoText-1652 [10] intro-
duces a text-guided framework that integrates language, vision,
and geolocation for interactive navigation. Although GeoText-
1652 achieves promising text—image alignment, it still suffers
from semantic dilution during cross-view transitions, which
limits the extraction of key object attributes. To overcome
this limitation, we propose SAA-DGL, a framework that



enriches and aligns semantic attributes (e.g., color, shape, and
position) with visual features. In contrast to prior work that
mainly emphasizes global alignment or contrastive objectives,
our approach focuses on fine-grained attribute—image fusion,
leading to improved robustness and interpretability in both
text-to-image and image-to-text geo-localization.

B. Natural Language-guided Navigation

Natural language-guided navigation enables agents, such as
robots or drones, to follow human instructions in unknown or
partially known environments. Early research, particularly in
indoor settings, was conducted under the Vision-and-Language
Navigation (VLN) paradigm [22], where sequence-to-sequence
models [23] were used to integrate linguistic, visual, and
spatial information. Fried er al. [24] proposed the Speaker-
Follower model using reinforcement learning. Recent advances
leverage pre-trained language models to improve instruction
grounding [25]. Vision-language pretraining [26], time-aware
recurrent models [27], graph-based planning [28], and fine-
grained alignment [29] have all shown promise in navigation
tasks. Talk2Nav [30] incorporated dual attention and spatial
memory to improve real-world performance. Xu ef al. [31]
proposed a factor graph-based sensor fusion framework for ro-
bust real-time navigation in unstructured environments. Zhou
et al. [32] combined a frozen LLM with a policy network
to enhance interpretability while maintaining competitive per-
formance. In outdoor scenarios, DroneVLN [11] adapted the
VLN-BERT model [27] to unmanned aerial vehicle (UAV)
navigation using a pre-trained multimodal encoder to align
language instructions with visual observations. With the advent
of LLMs, recent efforts have explored their role in UAV
navigation [33]. Gao er al. [34] enabled drones to follow
instructions without task-specific data, improving adaptabil-
ity in dynamic or data-scarce environments. Despite these
advances, current methods still lack fine-grained alignment
between textual semantics and drone-view perception, and
remain fragile in complex outdoor settings where diverse
viewpoints, environmental disturbances, and noisy instructions
often lead to misalignment. To address these challenges, we
explicitly model referential attributes such as color, shape,
spatial position, and object identity, enabling more robust
semantic grounding and reliable target localization under re-
alistic conditions.

C. Visual-Language Modality Alignment

Visual-language modality alignment aims to establish pre-
cise correspondences between textual semantics and visual
content, supporting various multimodal tasks such as image-
text retrieval. Prior work has focused on enhancing fine-
grained cross-modal alignment through adaptive gating [35],
word-region matching [36], and object tag anchoring [37]. The
advent of foundation models has led to large-scale cross-modal
pretraining frameworks such as CLIP [38], which align image-
text pairs in a shared embedding space. Jia et al. [6] pro-
posed a dual-encoder architecture, and Li et al. [39] adopted
pseudo-target-based self-training to enhance retrieval accuracy.
BLIP [40] improved robustness by guiding the generation of

high-quality captions, while Fei et al. [41] introduced unified
scene graph representations to improve spatial and temporal
alignment. Natural language-guided drone geo-localization is
a fine-grained cross-modal task related to image-text retrieval.
Chu et al. [10] were the first to apply the multi-granularity
alignment model X-VLM [42] to this task. APTM [43] focuses
on person retrieval with 27 manually predefined attributes and
a parameterized cross-encoder for attribute—image alignment.
In contrast, our work addresses drone geo-localization in large-
scale environments by using LLMs to automatically extract
open, fine-grained attributes from natural language without
relying on fixed attribute sets. Despite recent progress, most
methods overlook the influence of drone-viewpoint variations
on object appearance and spatial semantics, often leading to
misalignment. We also address this issue by introducing a
semantic attribute alignment strategy that explicitly enhances
cross-modal fusion without introducing additional trainable
parameters. Different from existing approaches that rely on
learnable query vectors or deep parameterized stacks, our mod-
ules perform single-pass, similarity-driven interactions. This
design ensures efficiency and stability in limited-data scenarios
while preserving the region—concept alignment priors already
encoded in the pretrained backbone, ultimately improving
robustness and interpretability in drone-view geo-localization.

III. PROPOSED METHOD

A. Problem Formulation and Task Definition

Natural language-guided DGL enables autonomous drones
to interpret free-form language instructions and localize target
regions within a geo-referenced drone-view image gallery.
This task involves both semantic understanding and spatial rea-
soning, and is typically formulated as a cross-modal retrieval
problem due to viewpoint variations and scene ambiguity. To
support similarity-based matching, language and visual inputs
are embedded in a shared space. We define two symmetric sub-
tasks: Text-to-Drone-view Image Retrieval (T2I) and Drone-
view Image-to-Text Retrieval (I2T), where each instruction
t = (e, s) includes a global caption ¢ and local sentences s for
hierarchical alignment with corresponding drone-view images
and subregions. Given an instruction t¢;, the goal of T2I is
to retrieve the most semantically and spatially aligned image
from gallery G:

fra(t;,G) = arg max Sim(Er(t;), E1(9)), (1)

where Fr and Ej are the text and image encoders, respec-
tively, and Sim(-,-) denotes the similarity function in the
shared space. Given a drone-view image g;, the I2T system
aims to retrieve the most relevant instruction from text 7

for(g;, T) = arg max Sim(E;(g;), Er(t)). (2)

This dual retrieval setup enables intuitive verification of align-
ment between drone perception and human language, which
is critical for interactive navigation tasks.
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Fig. 2.

Overview of the proposed SAA-DGL framework. The model consists of three main components: (1) Semantic Attributes Parsing, where an LLM

extracts fine-grained semantic attributes (e.g., shape, color, location, object) from the input natural language description; (2) LLMs-driven Cross-modal
Semantic Attribute Enrichment (LCSAE), where semantic attributes are explicitly fused with textual and visual embeddings to enhance semantic grounding
in the visual domain; and (3) Bidirectional Feature Alignment (BFA), which establishes cross-modal feature interaction through visual-semantic fusion
and late cross-modal integration, improving feature consistency across modalities. Notably, the figure distinguishes between the initial extraction of semantic
attributes from text (bottom) and the subsequent attribute-guided feature enhancement (middle), although both involve semantic attribute representations.

B. Overview

Fig. 2 illustrates an overview of the proposed framework.
During training, a natural language instruction ¢ € 7, paired
with a set of drone-view images g € G from multiple perspec-
tives, is fed into a multimodal encoder to extract modality-
specific features T and V for text and image, respectively.
These features are further enriched through the LCSAE mod-
ule, which prompts a large language model to extract object-
centric semantic attributes A (e.g., shape, color, position, and
content) from the instruction ¢. These attributes guide the
refinement of visual features V, resulting in representations
V, with instruction-aligned semantics. The BFA module then
performs mutual refinement across modalities. The enriched
visual feature V,, aligned with attribute embeddings A, is
fused with the original feature V to produce Vg, which
in turn enhanced by the textual representation T to yield
F'. This bidirectional process facilitates fine-grained semantic
integration across modalities. Finally, the Enriched Cross-
modal Geolocation Matching (ECGM) module compares Vg
and F to identify semantically and spatially aligned image-
text pairs. Following the benchmark setting [10], ECGM
jointly optimizes semantic and spatial alignment through a uni-
fied loss that integrates contrastive learning, binary relevance

prediction, object grounding, and spatial relation modeling.
These enriched features directly contribute to loss computation
and supervision, enhancing the precision of natural language-
guided drone geo-localization.

C. LLMs-driven Cross-modal Semantic Attribute Enrichment

The LCSAE module serves as a key component of our
framework, designed to hierarchically extract and align seman-
tic features across textual and visual modalities. It empowers
the model to capture abstract semantic attributes, such as
color, position, shape, and object identity, that are essential
for establishing fine-grained correspondences between natural
language descriptions and visual content. As illustrated in
Fig. 2, the module consists of three synergistic components:
Semantic Attribute Parsing, Multi-modal Enrichment Encod-
ing, and Cross-modal Visual-Attribute Fusion.

1) Semantic Attributes Parsing: To bridge the semantic
gap between the text and image, we leverage the LLM to
parse input text and distill four visually salient attributes:
color, position, shape, and object. These attributes are encoded
as structured semantic representations that guide subsequent
visual feature extraction, emulating human visual cognition



s A
Prompt: .Please extract the following four

types of information from the description above separately: 1.
Color information; 2. Position information; 3.Shape information;
4. Object information. Summarize each type of information in
one concise sentence.

Output:

An example of our prompt template

The main object in the center of the image is a
large, black building with a flat roof. The building appears to be
made of concrete and has large windows on the upper levels.
Please extract the following four types of information from the
description above separately: 1. Color information; 2. Position
information; 3.Shape information; 4. Object information.
Summarize each type of information in one concise sentence.
Output: 1. The building is predominantly black. 2. The
building is in the center of the image. 3. The building has a flat
roof. 4. The main object is a large black building made of
L concrete with large windows on the upper levels. )

Fig. 3. An illustration of the prompt design used for LLMs-driven attribute
enrichment. The prompt is designed to guide Qwen2-72B [44] model to extract
four types of contextual information—color, position, shape, and object—from
textual scene descriptions. The upper part shows the abstract template, while
the lower part provides a concrete example with both the input description
and the LLM’s structured output.

principles where salient features (e.g., color, position) serve
as primary cues for scene understanding.

Formally, given an input caption ¢, we construct a spe-
cialized prompt (as shown in Fig. 3) and query the LLM
to extract fine-grained semantic attributes, including color,
position, shape, and object information. The resulting attribute
set can be formulated as:

Ay = LLM(Prompt(t)) = {d¢, dp, ds, do }, 3)

where A; denotes the set of textual descriptors guided by
the input caption ¢, with d., dp, d,, and d, corresponding
to color, position, shape, and object-related semantics, re-
spectively. These attributes serve as conceptual anchors that
guide the image encoder to attend to text-relevant visual
patterns (Fig. 1), thereby reducing cross-modal ambiguity and
improving alignment precision.

2) Multi-modal Enrichment Encoding: We adopt X-
VLM [42] as the backbone for multi-modal encoding, leverag-
ing its strong capability in aligning visual and textual represen-
tations. X-VLM consists of a unified transformer architecture
that jointly processes both image and text inputs, enabling
effective cross-modal feature extraction and interaction. Given
an input caption sequence t, a drone-view image g, and four
attribute descriptors A, = {d., dp,ds, d,} representing color,
position, shape, and object semantics, we feed them into X-
VLM to obtain a set of enriched multi-modal embeddings:

TvAcaAvasaAoaV = X'VLM(tvdcvdpadsvdo»g)a 4

where T denotes the original texual embedding, A =
{A¢,Ap, A, AL} are the embeddings of the corresponding
semantic attributes, and V is the visual representation.

3) Cross-modal Visual-Attribute Fusion: The goal of this
component is to utilize the four visually salient attributes
identified by the LLM to refine and enhance the alignment

between textual and visual modalities. First, we employ the
attribute embeddings A., A, A, A, as queries to attend over
the caption embedding T, computed as:

a.=ATT

oy = ApTT

as = ATT 5)
a, =A,TT

a = Softmax(a. + o + s + @)

T, =aT

Next, we use the attribute-aware textual representation T, to
guide attention over the original drone-view image embedding
V, formulated as:

B = Softmax(VT,")

V.= BV (6)

Here, V, forms a fine-grained, attribute-guided representa-
tion that emphasizes semantically aligned regions between the
visual and textual modalities. This alignment enables more
precise cross-modal fusion by focusing on the most relevant
features as identified through attribute reasoning.

D. Bidirectional Feature Alignment

Inspired by the lens of information bottleneck theory [45],
we propose a novel BFA module that establishes a co-
refinement mechanism between textual and visual represen-
tations by simultaneously minimizing the cross-modal con-
ditional entropy H(V|T) and H(T|V'). This module aims
to address the inherent semantic gap between heterogeneous
modalities in vision-language representation learning. Unlike
conventional unidirectional alignment methods, our framework
employs an interactive architecture to enable mutual feature
enhancement, effectively synchronizing cross-modal semantics
while preserving modality-specific discriminative characteris-
tics.

1) Visual-Semantic Fusion: In this stage, we employ resid-
ual connections [46] in line with the principle of information
bottleneck theory. Specifically, we first formulate the visual
feature refinement process. Let V denote the initial visual em-
bedding extracted from the drone-view image, and V, denote
its attribute-aware counterpart obtained via attribute-guided
attention. We compute the enhanced visual representation V,
using a residual formulation:

Vs=V,+V. @)

2) Late Cross-Modal Integration: To complete the bidi-
rectional alignment, we design an asymmetric cross-attention
mechanism that propagates visual contextual information back
to the textual domain. Given the enhanced visual features V,
and the original textual embedding T, we compute token-
aware visual-textual attention scores:

v = Softmax(V,TT), (8)

where v € RNo*Nt represents the attention distribution
between the visual and textual modalities, with N, and N¢



denoting the number of visual grid tokens and textual tokens,
respectively. Each element of v reflects the relevance between
a visual patch (row of V,) and a textual token (column of T').
The refined textual representation is computed via:

F=f(T)+T, where f(T)=~T. )

Here, f(T) denotes the attention-weighted transformation
of the caption features modulated by the visual cues. This
residual formulation allows for stable and interpretable fusion,
where the updated textual embedding F incorporates discrim-
inative visual signals while retaining its original semantic
intent. Finally, Vg and F form a fine-grained, attribute-
guided cross-modal representation that emphasizes seman-
tically aligned regions between vision and language. This
mutual enhancement facilitates more fine-grained alignment
and supports downstream geo-localization tasks.

E. Enriched Cross-modal Geolocation Matching

As part of our SAA-DGL framework, we introduce the
ECGM module, which improves retrieval and localization
by incorporating two complementary components: Image-Text
Semantic Matching and Blending Spatial Matching. Built upon
the CMG module [10], ECGM benefits from the enriched
features, which enhance the semantic alignment and retrieval
precision. In addition, we adopt the loss functions based on
the GeoText-1652 baseline to ensure consistent evaluation and
a fair comparison with prior work.

Image-Text Semantic Matching. Given an enriched cross-
modal feature pair (Va,,F), where V, is the attribute-aware
image representation and F is the visual-aware text represen-
tation, we compute cosine similarity as:

V,'F
Sim(g, t) = = (10)
IVall2[[F|2
where || - |2 denotes the L2 norm. Based on contrastive

learning, all non-matching pairs within a batch of N samples
are treated as negatives. The in-batch retrieval probabilities
are:

P exp(Sim(g,t)/7)
g—t N : .
> ieq exp(Sim(g, t;)/7) (11)
Py = exp(Sim(g,t)/7) '

>2Ls exp(Sim(gi, 1)/7)
where 7 is a learnable temperature parameter. The In-batch
Text-Image Contrastive (ITC) loss is defined as:

1
Lirc = _iE log(Py—t) + log(Pi—yg)] - (12)

We further incorporate an image-text matching loss L,
which uses a binary classifier to distinguish positive and hard
negative pairs based on similarity. Together, Lirc and Lipm
constitute the Image-Text Semantic Matching component.

Blending Spatial Matching. Following [10], we integrate
spatially grounded objectives to enhance fine-grained local-
ization. The grounding loss Lgrounding Uses text-guided cross-
attention to regress bounding boxes of target objects. The
spatial relation loss Lpaiar classifies pairwise spatial configu-
rations of regions into pre-defined categories. These two losses

together form the Blending Spatial Matching component,

supporting accurate object grounding and spatial reasoning.
Total Loss. The total loss integrates semantic and spatial

objectives under a multi-task optimization strategy:

»Clotal = L:ITC + ['ITM +A (['grounding + »Cspatial) ) (13)

where A\ = 0.1 balances the contribution of spatial objectives.

IV. EXPERIMENTS
A. Datasets and Metrics

Dataset. We evaluate our model on the GeoText-1652
benchmark [10], which covers 1,652 buildings across 72
universities with images captured from satellite, drone, and
ground views. Each image is annotated with fine-grained la-
bels, including global and region-level descriptions, averaging
70.2 and 21.6 words respectively. The dataset provides a
training set of 701 cases (50k images, 150k global and 452k
region queries) and two testing splits: Full-Test (951 cases)
and 24G-Test (190 cases with reduced case count but full
data volume for efficient evaluation on limited GPUs). To
further assess robustness, we construct AW-Test from 24G-
Test, simulating adverse conditions in both modalities. Visual
corruptions include brightness change, motion blur, rain, snow,
and fog, while textual disturbances cover OCR errors, casual
expressions, word deletion/repetition, and synonym substitu-
tion. This challenging test set enables systematic evaluation
of model generalization under adverse weather and noisy
instructions.

Evaluation Metrics. Following the standard evaluation
protocol in [10], we adopt Recall at K (R@K) as the primary
metric to assess retrieval performance, where K is set to 1, 5,
and 10. Specifically, we report R@1, R@5, and R@ 10 for both
T2I and I2T tasks. R@K indicates the percentage of queries
for which the correct match is found within the top-K retrieved
results. Higher R@K values reflect better retrieval performance
and more accurate cross-modal alignment.

B. Implementation Details

In this study, we employ X-VLM [42] pretrained on 16
million (M) image-text pairs as our foundational architecture.
The model incorporates a BERT-based [49] text encoder and
a Swin-Transformer [25] visual encoder. For optimization,
we utilize AdamW [50] with a weight decay of 0.01 and a
learning rate of 3 x 1075, All input images are uniformly
resized to 384 x 384 pixels with a patch size of 32 during
training. Our data augmentation strategy is intentionally con-
strained to brightness adjustment and identity transformation,
explicitly excluding random rotations and horizontal flips to
preserve crucial spatial relationships in the visual data. During
evaluation, we preprocess text queries derived from global
descriptions by removing stop words to maintain semantic
precision while improving computational efficiency. For other
parameters, we follow the settings used in [10]. To provide
a clearer sense of practicality, we report computational re-
sources: the model was fine-tuned for three epochs on four
NVIDIA A100 GPUs (80GB each), requiring approximately
12 hours of training. It is worth noting that the increase in



TABLE I
PERFORMANCE OF NATURAL LANGUAGE-GUIDED DRONE GEOLOCALIZATION ON GEOTEXT-1652 BENCHMARK AND AW-TEST (FOGGY CONDITIONS),
EVALUATING TEXT-TO-DRONE-VIEW IMAGE RETRIEVAL (T2I) AND DRONE-VIEW IMAGE-TO-TEXT RETRIEVAL (I2T) TASKS ACROSS STANDARD AND
ADVERSE-WEATHER SCENARIOS. TEXT QUERY: TEXT-TO-DRONE-VIEW IMAGE RETRIEVAL. IMAGE QUERY: DRONE-VIEW IMAGE-TO-TEXT RETRIEVAL.

#Pretrained Text Query (%) Image Query (%)

Dataset Methods #Params Images RO1 R@S RGO RO1 R@S R@10
UNITER [36] 300M 4M 0.9 2.7 4.2 2.5 7.4 11.8

METWE-Swin [47] 380M 4M 1.3 3.9 5.8 2.7 8.0 12.2

ALBEF [39] 210M 4M 1.8 4.8 7.1 2.9 8.1 124

ALBEF [39] 210M 14M 1.1 35 5.3 3.0 9.1 14.2

X-VLM [42] 216M 4M 43 9.9 13.2 4.9 14.2 21.1

X-VLM [42] 216M 16M 45 9.9 13.4 5.0 14.4 214

UNITER Fine-tuned [36] 300M 4M 10.6 20.4 26.1 214 43.4 59.5

Full-Test METWE-SWingine-tunea 471 380M 4M 11.3 21.5 27.3 22.7 46.3 60.7
ALBEFFine tunea 1391 210M 4M 123 22.8 28.6 22.9 495 62.3

ALBEFpie-runea 1391 210M 14M 12.5 22.8 28.5 23.2 49.7 62.4

X-VLM fine-runed 1421 216M 4M 13.1 23.5 292 23.6 50.0 63.2

X-VLMFine-tunea 1421 216M 16M 132 23.7 29.6 25.0 52.3 65.1

CMG [10] 217M 16M 13.6 24.6 31.2 26.3 53.7 66.9

SAA-DGL (Ours, X-VLM [42]) 221M 16M 14.9 28.4 358 28.2 56.5 69.0

SAA-DGL (Ours, X2-VLM [48]) 261M 16M 16.7 29.2 36.2 29.4 57.2 69.4

CMG [10] 217M 16M 29.9 46.3 54.1 50.1 81.2 90.3

24G-Test SAA-DGL (Ours, X-VLM [42]) 221M 16M 30.7 49.2 57.6 52.1 83.3 91.4
SAA-DGL (Ours, X2-VLM [48]) 261M 16M 319 49.8 57.9 53.3 83.9 91.7

CMG [10] 217M 16M 22.6 38.9 475 222 47.1 59.4

AW-Test-Fog SAA-DGL (Ours, X-VLM [42]) 221M 16M 23.5 40.5 49.5 23.7 50.8 64.8
SAA-DGL (Ours, X2-VLM [48]) 261M 16M 25.1 41.2 49.9 254 51.5 65.2

parameters of our overall framework, compared to the baseline TABLE II

method, primarily arises from the incorporation of additional
attribute features.

C. Main Results

We evaluate our model on Full-Test, 24G-Test, and AW-
Test to assess its effectiveness and generalization, with re-
sults summarized in Table I. On the Full-Test set, our
method achieves 14.9% R@]1 for text-to-image retrieval and
28.2% R@1 for image-to-text retrieval, outperforming the
best baseline CMG [10] by +1.3% and +1.9%, respectively.
The gains are more pronounced in higher recall levels,
e.g., +4.6% R@10 for text queries and +2.1% for image
queries, demonstrating that explicitly modeling attributes such
as color, position, shape, and object enhances robustness in
complex matching scenarios. On the 24G-Test, our model
continues to outperform CMG with notable improvements:
R@1/5/10 reach 30.7%/49.2%/57.6% for text queries, and
52.1%/83.3%/91.4% for image queries. These results confirm
the method’s effectiveness under constrained memory settings.
Under adverse-weather conditions (AW-Test), although overall
performance drops due to fog-induced noise, our method still
surpasses CMG, showing improved robustness by leverag-
ing fine-grained attribute features that help mitigate visual
degradation and preserve cross-modal alignment. Finally, our
approach achieves these improvements with only a modest
parameter increase of 4M (from 217M to 221M or 261M) on
X-VLM and X2-VLM, highlighting its efficiency in computa-
tion and effectiveness in narrowing the semantic gap between
modalities.

ABLATION STUDY OF OUR PROPOSED METHOD (SAA-DGL) ON THE
24G-TEST SET. WE EVALUATE THE CONTRIBUTION OF KEY
COMPONENTS, INCLUDING THE LCSAE WITH ATTRIBUTES AND BFA
MODULES. PERFORMANCE IS MEASURED USING RECALL@K (R@]1,
R@5, R@10) FOR BOTH T2I AND I2T GEO-LOCALIZATION TASKS.

Model Text Query (%) Image Query (%)
R@1 R@5 R@10 R@1 R@5 R@10
SAA-DGL (Ours) 30.7 49.2 57.6 52.1 83.3 91.4
w/o LCSAE 29.8 46.9 55.0 49.3 80.8 89.7
w/o Color 30.1 48.4 56.5 50.9 81.7 90.3
w/o Position 29.8 48.1 57.0 50.5 81.2 90.7
w/o Shape 30.8 49.0 573 51.6 83.0 90.8
w/o Object 30.5 49.3 56.9 51.0 82.8 91.7
w/o BFA 29.9 47.6 55.5 49.8 81.3 90.1
w/o VSE 30.6 48.2 56.3 512 827 91.0
w/o CMA 29.9 47.9 55.8 50.6 81.7 90.0
TABLE III

COMPARISON OF DIFFERENT FUSION STRATEGIES IN BFA ON THE
24G-TEST SET. WE EVALUATE ATTRIBUTE-ENHANCED VISUAL
REPRESENTATIONS FUSED WITH GLOBAL TEXT FEATURES USING 1-LAYER
CROSS ATTENTION (CA), 3-LAYER CA, AND OUR BFA DESIGN.

24G-Test 1-layer CA 3-layer CA Ours
Toxt R@1 30.1 296 307
e R@5 473 457 492
Query
R@10 55.0 534 576
. R@1 50.9 498 52.1
mage R@5 817 80.6 833
Query
R@10 905 89.2 914

D. Ablation Study of SAA-DGL

To further assess the contribution of each component in our
framework, we conduct an ablation study on the 24G-Test set,



as shown in Table II.

Effectiveness of LCSAE. We evaluate the role of the
LCSAE module by progressively removing specific semantic
attributes. w/o LCSAE denotes the removal of the entire
module, while w/o Color, w/o Position, w/o Shape, and w/o
Object represent models with specific attribute types excluded
from the semantic feature extraction process. Removing the
LCSAE module leads to a substantial performance drop, espe-
cially in image-to-text retrieval (R@1: 49.3% vs. 52.1%; R@5:
80.8% vs. 83.3%; R@10: 89.7% vs. 91.4%), confirming its
importance in guiding visual feature refinement through tex-
tual semantics. Among individual attributes, excluding color
and position results in larger performance degradation than re-
moving shape or object features. This highlights that color and
spatial cues are more visually salient and directly perceived,
playing a critical role in grounding. Notably, the removal of
positional information causes significant degradation (e.g., -
0.9% R@1 for text query and -1.6% for image query), due to
its importance in distinguishing visual content captured from
varying angles. Without position cues, the model struggles to
differentiate objects with similar appearances from different
viewpoints. In contrast, excluding shape information yields the
least impact, likely because shape-related descriptions in the
dataset are less frequent and often ambiguous.

Effectiveness of BFA. Table II also evaluates the impact of
the BFA module and its components. Specifically, w/o BFA
removes the entire module, w/o VSF eliminates the Visual-
Semantic Fusion branch, and w/o CMA excludes the Cross-
Modal Attention mechanism. Removing BFA significantly
degrades performance, confirming its critical role in aligning
rich textual semantics with simpler visual cues. Textual de-
scriptions often contain detailed semantic information that can-
not be effectively grounded without feature-level alignment,
especially in cross-view scenarios with ambiguous visuals.
Excluding the VSF branch leads to moderate drops in both
tasks (e.g., -0.1% R@1 on text query, -0.9% on image query),
indicating that visual features derived solely from textual
semantics are insufficient. Original visual embeddings provide
complementary information that enhances representation when
fused with semantic features. Similarly, removing CMA results
in a noticeable performance decline, validating its importance
in enabling deep interaction between modalities. CMA facil-
itates bidirectional attention between text and vision, helping
the model capture fine-grained semantic correspondences es-
sential for cross-modal understanding.

Effectiveness of Fusion Strategies in BFA. Table III sum-
marizes the comparison of different fusion strategies on the
24G-Test set, including 1-layer cross-attention (CA), 3-layer
CA, and our approach. For text-to-image retrieval, our method
consistently achieves the highest performance, reaching 30.7%
R@1, 49.2% R@5, and 57.6% R@10, clearly surpassing
both 1-layer and 3-layer CA. A similar trend is observed
in image-to-text retrieval, where our approach attains 52.1%
R@1, 83.3% R@5, and 91.4% R@10. Interestingly, increasing
the depth of CA from one to three layers fails to provide
further improvements and can even cause slight degradation
(e.g., R@1 decreases from 30.1% to 29.6% in text-to-image
retrieval). This indicates that CA is not easily scalable in this

setting, whereas our method avoids overfitting and ensures
stable fusion. Overall, the results substantiate the effectiveness
of our fusion strategy, showing that it not only competes
with but also outperforms attention-based mechanisms while
offering greater efficiency and robustness.

TABLE IV
DIFFERENT SEMANTIC INFORMATION. THE SPECIAL SEMANTIC
INFORMATION IS GENERATED BY LLMS BASED ON THE CAPTION.

Attributes Special Semantic Info General Semantic Info
Color e.g., “The building is black.” “Color Information”
Position e.g., “The building is in the center.” “Position Information”
Shape e.g., “Flat roof, rectangular shape.” “Shape Information”
Object e-8 “A‘L?:ﬁeuzij;k;&[;c;s:,}j uilding “Object Information”

TABLE V
THE RESULTS OF DIFFERENT SEMANTIC INFORMATION ON 24G-TEST.
PERFORMANCE COMPARISON OF SAA-DGL USING SPECIAL SEMANTIC
INFORMATION (SSI) AND GENERAL SEMANTIC INFORMATION (GSI)
AGAINST THE CMG BASELINE ON THE 24G-TEST DATASET.

SAA-DGL SAA-DGL
24G-Test MG With SSI With GSI
Toxt R@1 299 30.7 30.1
X R@5 463 492 485
Query
R@10 54.1 576 56.9
. R@1 50.1 2.1 516
mage R@5 812 833 833
Query
R@10 903 914 91.0

E. Effect of Special and General Semantic Attributes

We investigate the effectiveness of general semantic infor-
mation (GSI) and special semantic information (SSI), both
derived from LLMs, in guiding drone-view navigation. This
experiment evaluates whether GSI remains effective across
varying textual attributes without depending on fine-grained
LLM outputs. Results show that semantic information at
different abstraction levels supports instruction-grounded lo-
calization and offers broader generalization to scenarios em-
phasizing specific semantics. We hypothesize that GSI benefits
from the rich visual-semantic mappings learned by multimodal
foundation models, allowing accurate alignment even without
explicit fine-grained cues. As shown in Table IV and Table V,
for text queries, the GSI-based method performs comparably
to SSI (e.g., R@1: 30.1 vs. 30.7; R@10: 56.9 vs. 57.6),
demonstrating the utility of general semantics in capturing
task-relevant cues. Both GSI and SSI significantly outperform
CMG, confirming the benefits of semantic-guided learning.
For image queries, GSI also achieves strong performance
(R@1: 51.6; R@10: 91.0; R@5: 83.3), matching SSI and
highlighting the alignment advantages from general semantics.
While SSI offers marginal gains, these benefits diminish
with increased system complexity. In contrast, GSI provides
practical advantages in low-resource settings, generalization to
unseen attributes, and LLM-constrained deployments, enabling
robust navigation without fine-grained semantic parsing.



The image shows a large black building with a flat roof and several windows. The building appears to be abandoned, with
overgrown grass and weeds surrounding it.

The image shows a large building with a black roof and white walls. The building appears to be a single-story structure with
multiple windows on the front and side facades. 3¢

This is a satellite image of a large building on the top of a hill. The building has a flat roof and several windows on the top floor.
On the upper right side of the building, there is a parking lot with several cars parked in it. 3¢

This image shows a large, modern building with a flat black roof and white walls. The building is located on a large piece of land
that is mostly covered in grass and trees. ¢

The building in the image is a large, modern structure with a flat roof and large windows. The building appears to be made of
concrete and steel with a black exterior. 3¢

The image shows a large building with a black roof and white walls. The building appears to be a single-story structure with
multiple windows on the front and side facades. ¢

The building in the image is a large, modern structure with a flat black roof and white walls. It appears to be a single story
building with large windows and a glass entrance.  §¢

. Color Information

. Shape Information

This is a satellite image of a large building on the top of a hill. The building has a flat roof and several windows on the top floor.
On the upper right side of the building, there is a parking lot with several cars parked in it.

Baseline

. Position Information

The image shows a large black building with a flat roof and several windows. The building appears to be abandoned, with
overgrown grass and weeds surrounding it.

. Object Information

This is an aerial view of a building with a large courtyard in the center. The building has a black roof and white walls. 3¢

(a) Image Query Retrieval. The texts are arranged from top to bottom in descending order of similarity scores (Top-5).
Among them, a gray background with a green checkmark indicates a correct match, while the absence of a background

with a red cross indicates a wrong match.

The main object in the
image is a large, black
building with several
windows and a flat roof.
The building appears to
be made of concrete or
some other type of
durable material, and it

Our Method

appears to be quite large,
with several stories. On
the middle left side of
the main object, there is
a large field or park
with several trees and a
walking path.

Baseline

(b) Text Query Retrieval. The images are arranged from left to right in descending order of similarity scores (Top-5).
The images marked with red borders indicate false matches, while those with green borders indicate true matches.

Fig. 4. Qualitative examples demonstrating the effectiveness of our method compared to prior work [10] on language-guided drone geo-localization.
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Fig. 5. Similarity between image and text on 24G-Test. Our method uses
(Va) and (Ty) to denote the hidden states of image and text. CMG employs
(V) and (T) to denote the hidden states of image and text.

F. Similarity of Text and Visual Information

We employ cosine similarity to evaluate the alignment
between text and image features, validating the effectiveness
of our model. Since natural language-guided drone navigation

is essentially a retrieval task, higher cross-modal similarity
indicates stronger semantic alignment and improved naviga-
tion accuracy. We compute cosine similarity scores for 4000
randomly sampled pairs, with results shown in Fig. 5. Our
method significantly outperforms CMG [10], with 40.4% of
the samples achieving similarity values above 0.4, compared
to only 5.2% for CMG in 4000 samples. Moreover, the sim-
ilarity distribution in our method does not overly concentrate
at high values, indicating that while semantic alignment is
strong, the model also preserves feature discriminability, thus
avoiding overfitting. This substantial improvement is primarily
attributed to our semantic feature extraction and alignment
strategy, which effectively captures core attributes from both
modalities and enables precise cross-modal matching.

G. Qualitative Case Study

We present qualitative examples from the 24G-Test set to
illustrate the effectiveness of our method in both image-to-
text and text-to-image retrieval tasks. As shown in Fig. 4
(a), for an image query, our model ranks the correct text at
the top-1 position, whereas CMG ranks it fourth. In Fig. 4
(b), for a text query, our method successfully retrieves the
correct image, which CMG fails to retrieve within the top-5
results. These results highlight the advantage of our approach
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At the center stands a
modern building with
a white facade and flat green
roof, with grass, trees,
and a baseball field on
the upper right, a flat-
roofed smaller building
on the upper left, and
city buildings extending
into the background.

. Color Information
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Fig. 6. Text to Image, which demonstrates the contribution of key components (LCASE and BFA). The images are arranged from left to right in descending
order of similarity scores (Top-5). The images marked with red borders indicate false matches, while those with green borders indicate true matches.

in effectively leveraging enriched semantic attribute cues such
as color, position, shape, and object identity, in combination
with BFA, to improve retrieval accuracy. For instance, in
text-to-drone-view image retrieval, spatial phrases like “on
the middle left side,” color attributes like “black,” structural
cues like “flat roof,” and object references such as “trees”
contribute to accurate image grounding. Conversely, in drone-
view image-to-text retrieval, visual semantics such as “black,”
“windows,” “grass,” or “flat” allow for effective alignment
with corresponding textual descriptions. These cases validate
the effectiveness of the proposed model in semantic attribute
extraction and cross-modal alignment, further demonstrating
its advantages in interpretability and performance for natural
language-guided geo-localization tasks.

H. Ablation study visualizations of retrieval results

To better understand the contribution of each component,
we conduct ablation studies as illustrated in Fig. 6. The
LCSAE module enriches the vision-language representation
with attribute-level features, such as color, shape, position,
and object cues. These attributes provide concept-level knowl-
edge that enables the model to establish fine-grained vi-
sual-semantic alignment. In contrast, the BFA module focuses
on integrating global semantics by performing late cross-
modal fusion between textual instructions and visual features.

The qualitative results reveal distinct patterns. Without
LCSAE, the model still preserves overall object identity and
coarse spatial layout in the retrieved results, but fails to ac-
curately capture positional details (e.g., distinguishing objects
on the upper right versus upper left), leading to misalignment.
Without BFA, the model can still retrieve relevant objects
within the top-2 candidates, but insufficient global semantic
fusion results in top-ranked errors. The baseline, lacking
both attribute-level and global instruction—visual alignment,

produces severe mismatches at both the local detail level and
the global semantic level. These observations highlight the
complementary nature of LCSAE and BFA: attribute-level
enrichment provides robust concept grounding, while global
fusion ensures coherent alignment with textual instructions.

1. Robustness Analysis on AW-Test

To further evaluate the robustness of our method under
multimodal perturbations, simulating adverse weather and
communication interference, we conduct experiments on AW-
Test, a challenging benchmark constructed based on 24G-Test.
AW-Test includes ten representative types of textual and visual
corruptions with relatively high severity. Table. VI reports
R@1 quantitative results under five textual and five visual
query corruptions, while Fig. 7 presents representative qual-
itative comparisons. We adopt R@1 as the evaluation metric
since it directly reflects the success or failure of drone geo-
localization under severe disturbances. Experimental results
show that both our method and the baseline suffer noticeable
performance degradation under visual corruptions, particularly
in challenging cases such as fog, motion blur, and snow,
indicating that localization accuracy is severely affected in
adverse weather or during rapid drone maneuvers. In textual
corruptions, word-level perturbations cause weaker perfor-
mance drops compared to character-level or sentence-level
disturbances. Overall, our SAA-DGL method consistently out-
performs the baseline across all corruptions, suggesting that
enriching semantic attributes strengthens robustness, with less
corrupted attributes playing a key role in maintaining retrieval
accuracy. These results demonstrate that the proposed semantic
attribute alignment significantly enhances robustness against
adverse weather and complex scenarios in both text-to-image
and image-to-text retrieval.



TABLE VI
ROBUSTNESS EVALUATION OF SAA-DGL WITH SPECIAL SEMANTIC INFORMATION (SSI) AND THE BASELINE ON AW-TEST. EACH MODALITY QUERY IS
EVALUATED ONLY UNDER ITS OWN CORRUPTION TYPES; NO CORR. DENOTES THE CLEAN SET. WE REPORT R@ 1 AS THE PRIMARY METRIC SINCE IT
DIRECTLY MEASURES THE ACCURACY OF THE TOP-RANKED RETRIEVAL RESULT UNDER QUERY CORRUPTIONS, WHICH IS MOST CRITICAL IN DGL.

R@1 under Text Query Corruptions

Methods No Corr. OCR Errors Casual Var. Word Delet. Word Repet. Synonym Subst.
CMG 29.9 234 24.7 26.2 28.7 24.9
SAA-DGL 30.7 25.2 26.1 27.0 30.3 25.8
R@1 under Image Query Corruptions
Methods No Corr. Brightness Fog Motion Blur Rain Snow
CMG 50.1 25.1 222 18.6 23.5 21.3
SAA-DGL 52.1 27.4 23.7 19.3 253 239
OCR Error Baseline Our Method Our Method
The image shows an The main object in the | This is an aerial view of a city
aerial view of o center of the image is a | block in a densely populated
college campus with large, modern building with | urban area. The buildings are all
multiple led-tiled a flat roof. The building | of different heights and are made

buildings and a green
lown in the center.
7he 6uildings have a
modern design with
lar9¢ windows and
flat roofs.

Synonym Subst. Our Method

Baseline

The effigy shows an
aery take_in of a
urban_center  street
with improbable
build up on either
incline of the route .
The street is void and
there are no vehicle
or pedestrian in hatful.

appears to be made of
concrete and steel. On the
lower middle side of the
building, there is a small
parking lot.

of red brick with metal frames and
grey slate roofs. On the middle
right side of the building, there is
a smaller, single-story building
with a red pitched roof.

Our Method

ENS S

This image shows an aerial | This is an aerial view of a large
view of a large sports|campus with multiple buildings
complex. The main object is | and a large green area in the center.
the stadium, which is a |The main object in the center of
rectangular building with a |the image is the campus with its
sloping roof. On the upper |characteristic red brick buildings
left side of the main object is |and green lawns. On the right side,
a large field that is used for |there are more buildings, some of
playing sports like baseball, |which are larger and taller than
football, and soccer. those on the left side.

Text—Image

Image— Text

Fig. 7. Comparisons of our method with the baseline on AW-Test under corruption scenarios across both text and image modalities regarding the R@1 metric.

V. CONCLUSION

In this paper, we have presented SAA-DGL, a framework
for natural language-guided drone geo-localization. Specifi-
cally, our approach incorporates an LLMs-driven Cross-modal
Semantic Attribute Enrichment module, wherein Large Lan-
guage Models extract enriched target attributes (e.g., color,
shape) from textual commands. These attributes are then
explicitly used to achieve fine-grained fusion between visual
features and enriched attributes. Furthermore, we introduce
a Bidirectional Feature Alignment module that effectively
fuses these attribute-enriched visual representations with tex-
tual information. Within BFA, visual features interactively
enhance language representations via visual-semantic fusion
and cross-modal alignment, thereby reinforcing mutual con-
sistency and reducing modality gaps. Experiments conducted
on the GeoText-1652 benchmark and a specialized dataset
featuring adverse weather conditions demonstrate that our
method achieves state-of-the-art performance in text-to-image
and image-to-text drone geo-localization tasks. This provides
robust support for precise drone geo-localization, consequently
enhancing navigation capabilities.

VI. FUTURE WORK

While SAA-DGL achieves robust retrieval and localization,
some limitations remain. The framework focuses on still-
image queries without modeling temporal dynamics, and it
is evaluated in single-agent settings without considering col-
laborative localization. In addition, efficiency under resource-
constrained UAV platforms is not fully explored. Future
work may enrich semantic attributes with more diverse cues
(e.g., texture, material, or affordance) to capture fine-grained
distinctions, and extend the framework to video-based geo-
localization by leveraging temporal consistency. Exploring
multi-agent scenarios with communication-efficient coopera-
tion is another promising direction. Finally, lightweight de-
signs or knowledge distillation could improve real-time de-
ployment, while incorporating external priors such as maps,
3D information, or scene graphs may further enhance robust-
ness in complex environments.
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